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Abstract

Tensor train rank-1 (TTr1) decomposition, as a variant of tensor train decomposition, is widely
used in quantum machine learning to decompose high-order tensors into low-order tree-like tensor
networks. However, due to the storage limitation, tensors can not be fully loaded in the main
memory simultaneously. A key step in the optimization of TTr1 is the utilization of Singular Value
Decomposition (SVD) for the tensor matricization, and memory limitation becomes the bottleneck
of existing TTr1 decomposition. In this work, we propose Parallel TTr1-Tensor, a randomized
compression-based scheme for tensor train rank-1 decomposition by trading computation for storage.
In addition, we maximize the parallelism of tensor operations to accelerate the proposed scheme on
GPUs. In experiments, we test the relative error of reconstruction and running time of our scheme on
various scales. Our method achieves a maximum of 151.2× speedup on GPUs versus CPUs with less
than 20% relative errors. To our knowledge, this is the first work to utilize the compression-based
technique to handle the TTr1 decomposition bottleneck due to the limited memory.

1 Introduction

In recent years, quantum machine learning algorithms [1–3], as a bridge for classical machine learning
and statistical physics, have been appreciated due to its solid theoretical foundation, advantages of
quantum computing acceleration, fewer number of parameters and good interpretability in physics.
Tensor decomposition [4] is a powerful technique used on quantum machine learning methods [5, 6]
to decompose high-order tensors into low order ones while mining potential patterns and features of
the tensors. Tensor train rank-1 (TTr1) [10] decomposition is one of the basic tensor decomposition
methods applied to tensor networks [8, 9].

Basic TTr1 decomposition method needs to load the full tensor into the main memory. However, in
recent years, due to the fact that the scale of tensors becomes increasingly large, the limited memory
becomes the bottleneck of TTr1 decomposition for the task of decomposing large scale tensors.

Randomized technology is a powerful computation acceleration technique which has been proposed
and studied for decades [11–13]. Randomized compression-based tensor decomposition has drawn
increasing attention in the academy. Many algorithms have been proposed for large scale tensor
decomposition, such as PARACOMP [14] for CP decomposition [15] and randomized Tucker
decomposition [16, 17]. In terms of TTr1 decomposition, there is a fact to confront that it lacks
efficient algorithms for large scale tensors and randomized technique has not been applied to TTr1
decomposition. In this work, we explore the effectiveness of compression-based technique and
propose a Parallel TTr1-Tensor method to achieve a randomized TTr1 decomposition.

First Workshop on Quantum Tensor Networks in Machine Learning, 34th Conference on Neural Information
Processing Systems (NeurIPS 2020), Vancouver, Canada.



Our main contributions are listed as follows: (1) By exploiting the compression-based technique,
we propose two compression-based strategies, Gaussian Compression and High-order Sketch Com-
pression, to achieve randomized tensor train rank-1 decomposition. (2) We make fully use of the
parallelism for tensor operations, design and achieve an efficient randomized TT-Tensor scheme on
GPUs. (3) We exploit the block strategy to compress large scale tensors and achieve the large scale
TTr1 decomposition of which the maximum scale is up to 5000× 5000× 5000.

2 Tensor Decomposition and Compression-based Methods

2.1 Notations

we use uppercase calligraphic letters to denote third-order tensors, e.g., X ∈ RI×J×K , and uppercase
boldface letters to denote matrices, e.g., A ∈ RI×J . We use � for Khatri-Rao product, ◦ for Kruskal
product, ∗ for Hadmard product which is also named the element-wise product, ⊗ for Kronecker
product, ||·||F for frobenius norm, and ×n for the mode n contraction between two tensors.

2.2 Tensor Train Rank-1 Decomposition

Tensor train rank-1 decomposition factorizes a tensor X ∈ RI×J×K , into a series of orthogonal

factors that can be written as X =
I∑

i=1

J∑
j=1

σiσi,jai ◦ bi,j ◦ ci,j , where ai ∈ RI , bi,j ∈ RJ and

ci,j ∈ RK . TTr1 decomposition uses sequential SVD method (TTr1-SVD) to obtain the factorization

factors. Also, for simplification, we rewritten the above equation as X =
IJ∑
n=1

σnan ◦ bn ◦ cn.

For TTr1-SVD algorithm, consider a tensor X ∈ R2×3×4, the tensor is first be unfolded to mode-1
matricization X(1). Using SV D algorithm, it can be written as a sum of rank-1 terms X(1) =
2∑

i=1

σiui ◦ vi where ui ∈ R2×1 and vi ∈ R3×1. Then each vi will be reshaped to Vi and using

SVD, it can be rewritten as Vi =
3∑

j=1

σi,jui,j ◦ vi,j , i = 1, 2. Combining the above steps, we can

rewritten the tensor as X =
2∑

i=1

3∑
j=1

σiσi,jui ◦ ui,j ◦ vi,j . For further simplification, we can rewrite

it as X =
6∑

n=1
σnan ◦ bn ◦ cn.

2.3 High-order Count Sketch Method

High-order Count Sketch (HCS) [18] is a novel dimensionality reduction method that preserves
the relevant information in high order data like tensors, through multiple smaller hash functions to
sketch the high-order tensors for reducing the size. Furthermore, HCS can be used for approximate
computation of various tensor operations like tensor contraction and Khatri-Rao product.

3 The Proposed Parallel TTr1-Tensor Scheme

3.1 Scheme Overview

The Parallel TTr1-Tensor scheme mainly consists of three stages, namely compression stage,
factorization stage and recovery stage. As illustrated in Figure 1 and Algorithm 1, a tensor
X ∈ R100×100×100 is first compressed into a set of compression replicas Yp ∈ R10×10×10,
p = 1, 2, 3. Techniques applied to the compression stage consist of the random Gaussian mode
matrix compression, or the random hash-based High-order Sketch method. Then, in the factoriza-
tion stage it factorizes all the compression replicas independently to obtain the tensor train rank-1
factors σ̂p,i ∈ R, σ̂p,i,j ∈ R, âp,i ∈ R10, b̂p,i,j ∈ R10 and ĉp,i,j ∈ R10, p = 1, 2, 3, i = 1, 2, 3,
j = 1, 2, 3, in the compression space. Finally, the corresponding recovery method is utilized
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Algorithm 1 The proposed Parallel TTr1-Tensor scheme
Require: tensor X ∈ RI×J×K ; dimensions of compression replicas L,M,N ; number of replicas P
Ensure: mode matrices (A,B,C)

1: Yp ← compress X according to (1) or (2), for p = 1, .., P
2: for p = 1 to P do
3: (Ap, Bp, Cp)← the TTr1SVD decomposition of Yp
4: (Ap, Bp, Cp)← the decompression of (Ap, Bp, Cp) according to (4) or (5)
5: end for
6: (A,B,C)← recovery using (Ap, Bp, Cp), p = 1, 2, ..., P
7: return (A,B,C)

to recover the estimation of the tensor train rank-1 factors in the original space. A least square
problem will be solved for the random Gaussian mode matrices compression method while the
reverse transformation and averaging all the respective estimations are needed for the High-order
Sketch method. After the recovery stage, we obtain the estimation of tensor train rank-1 factors
σi ∈ R, σi,j ∈ R,ai ∈ R100,bi,j ∈ R100 and ci,j ∈ R100, i = 1, 2, 3, j = 1, 2, 3, in the original
space.

Figure 1: An example for our parallel TTr1-Tensor scheme. A tensor X ∈ R100×100×100 is first
compressed into 3 replicas, then each replica is factorized to a tree-like structure. The recovery stage
is executed to recover the factorization factors.

3.2 Compression Stage

In our Parallel TTr1-Tensor scheme, we propose two methods, random Gaussian mode matrix com-
pression and random hash-based High-order sketch, to compress the original tensor X ∈ RI×J×K

into a series of replicas Yp ∈ RL×M×N , p = 1, 2, ..., P , of which the size along each mode is
reduced.

3.2.1 Gaussian Compression

By exploiting the Gaussian compression method (GCS), the scheme compresses the tensor X into a
relatively small tensor Y , the (i, j, k)-th element of Y can be written in the scalar form:

Ylmn = GCS(X )lmn =

I∑
i=1

J∑
j=1

K∑
k=1

UilVjmWknXijk, (1)

where U ∈ RI×L, V ∈ RJ×M , W ∈ RK×N are drawn from the identical independent Gaussian
distribution.

3.2.2 High-order Sketch Compression

Besides the Gaussian compression method, we also utilize the High-order Sketch Compression
method (HCS) in our scheme to compress the tensor X into a relatively small tensor Y , the (i, j, k)-th
element of Y can be written in a scalar form:

Ylmn = HCS(X )lmn =

I∑
i=1

J∑
j=1

K∑
k=1

δ1(i, l)δ2(j,m)δ3(k, n)s1,ls2,ms3,nXijk, (2)
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where δ1 is a function of two variables δ1(i, l) = 1 if h1(i) = l else 0, s1 ∈ RI is a random sign
function which randomly maps from [1, 2, ..., I] to [±1], h1 ∈ RI is a random hash function which
randomly maps from [1, 2, .., I] to [1, 2, ..., L], and likewise for δ2, δ3, s2 ∈ RJ , s3 ∈ RK , h2 ∈ RJ

and h3 ∈ RK .

The above compression methods will be executed P times to generate a series of independent
compression replicas Yp, p = 1, 2, .., P . There exists a trade-off between the compression ratio and
the repeated times P . With the size of replicas reduced, P needs to be sufficiently large to guarantee
a tolerant variance between the unbiased estimation and the true value.

3.3 Factorization Stage

We modified the original TTr1-SVD algorithm to accelerate the factorization stage. Compared
with the vanilla TTr1-SVD that selects all the eigenvectors at both SVD stages to construct the
factorization vectors, the modified algorithm just selects the first R1 left singular vectors for the first
SVD stage, and the first R2 left singular vectors for the second SVD stage, which reduces the number
of branches of factorization tree from L×min(M,N) to R1R2, where R1 and R2 are error-based
self adaptive in the process and (L,M,N) are the size of tensor to be decomposed. A(:, i), columns
of Bi and Ci are respectively composed of TTr1 vectors (aj ,bj , cj), j = 1, 2, .., R2. Formally,
given a tolerance of reconstruction error of matrix for SVD stages, we compute X(1) = AΣD,
where A ∈ RI×R1 , then reshape D(i, :) ∈ RMN to Di ∈ RM×N , i = 1, 2, ...R1, and we have
Di = BiΣ

′
iC

T
i , where Bi ∈ RM×R2 and Ci ∈ RN×R2 . σ̂i and σ̂i,j can be obtained from Σ and Σ′i

and we have σ̂n=σ̂1,i,j × σ̂i,j when n = i×R2 + j and σ̂1,i,j = σ̂i.

After the compression stage, we obtain P compression replicas Yp, p = 1, 2, 3..., P , with the
Gaussian compression or High-order Sketch method. At the factorization stage, each compression
replica Yp will be factored independently into (σ̂p,n, âp,n, b̂p,n, ĉp,n), n = 1, 2, .., R1R2 by our
modified TTr1-svd, where ˆσp,n is a scalar and âp,n ∈ RL, b̂p,n ∈ RM , ĉp,n ∈ RN are the
tensor train rank-1 decomposition orthogonal factors of the compression replica Yp along each
mode. We first rearrange the order of the factors (σp,n,ap,n,bp,n, cp,n) by the magnitude of σp,n,
n = 1, 2, .., N , and multiply σ̂p,n with âp,n, p = 1, 2, ..., P . Then we merge the orthogonal factors
along the same mode to (Ap,Bp,Cp), where Ap ∈ RL×R1R2 is the column concatenation and repeat
along each branch in the factorization tree of âp,n, n = 1, 2, .., R1, and likewise for Bp ∈ RM×R1R2

and Cp ∈ RN×R1R2 .

3.4 Recovery Stage

We obtain the tensor train rank-1 orthogonal factors of the replicas after the factorization stage. Here,
we sufficiently utilize the property of the Kronecker product [19] and the uniqueness of the tensor
train rank-1 decomposition to respectively recover the factors from the compression or sketch space
to the original space.

3.4.1 Recovery for Gaussian Compression

Recall the tensor train rank-1 decomposition of Yp is the sum of the outer product of the orthogonal

factors along each mode, i.e. Yp =
R1R2∑
n=1

σ̂p,n(âp,n � b̂p,n � ĉp,n). The Gaussian compression

method actually multiplies the random matrices along each mode to reduce the scale. From the
property of the Kronecker product and the uniqueness of tensor train rank-1 decomposition, we have

Yp = (UT
p ⊗V T

p ⊗WT
p )(

R1R2∑
n=1

σn(an�bn�cn)) =

R1R2∑
n=1

σn((UT
p an)�(V T

p bn)�(WT
p cn)), (3)

where (Up, Vp,Wp) are the random mode matrices exploited in the Gaussian compression method,
and (σn,an,bn, cn) are the tensor train rank-1 decomposition orthogonal factors. Then, we have
âp,n = UT

p an while âp,n is the factorization mode factors obtained from the compression replicas
and likewise for b̂p,n and ĉp,n, n = 1, 2, ..., R1R2. Recall that we have concatenated the orthogonal
factors with the same mode to (Ap, Bp, Cp), we can rewrite the above equation as Ap = UTA, and
likewise for Bp and Cp, p = 1, 2, ..., P .
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To recover for Gaussian compression method, we solve a least square problem A1

...
AP

 =

 UT
1
...
UT
P

A (4)

to obtain A and likewise for B and C.

3.4.2 Recovery for High-order Sketch Compression

We rewrite Eq.(2) in the following tensor form:

Y = HCS(X) = (S ∗ X )×1 H1 ×2 H2 ×3 H3, (5)

where S = s1 � s2 � s3 and Hm(i, j) = 1 if and only if hm(i) = j else 0, m = 1, 2, 3. The
recovery for the orthogonal factor is ap,n = s1 ∗ (H1âp,n) and likewise for the recovery of bp,n

and cp,n, p = 1, 2, .., P , n = 1, 2, .., R1R2. To recover for High-order Sketch compression, we
correspondingly average the mode matrices (Ap, Bp, Cp), p = 1, 2, ..., P , and obtain (A,B,C).

4 Optimization for GPU

4.1 Handle Large Scale Tensors

Due to the memory limitation, a large tensor can not be loaded and compressed to small replicas
directly. To process large tensors, we adopt a partitioning strategy in which we first split the tensor
X ∈ RI×J×K into multiple blocks Bn ∈ Rd1×d2×d3 , n = 1, 2, ..., IJK

d1d2d3
. Similar to the block

matrix multiplication, the full tensor contraction can also be computed via merging the computational
results of all blocks.

For Gaussian compression method, we exploit the related components of (Up, Vp,Wp) to compress
each block Bn to replicas Yn

p , p = 1, 2, ...P . Finally, they will be accumulated to the final replicas
Yp respectively, i.e. Yp+ = Yn

p , p = 1, 2, .., P . Likewise for High-order sketch method, related
random hash and sign matrices will be computed in time to map the block tensor from the original
space to the sketch space of reduced sizes.

4.2 Improve the Utilization of GPU

We exploit the popular open-source library Pytorch to accelerate the matrix multiplication operation.
To improve the utilization of GPUs, we execute the batch matrix multiplications on the compression
stage both for Gaussian compression and High-order sketch method. The batch SVD method is
executed at the factorization stage to parallelly compute the nodes on the second level and leaves on
the third level of the decomposition tree.

4.3 Reduce the Communication Cost

In our Parallel TTr1-Tensor, we adopt the strategy that we first split the tensor into multiple blocks
and compress every block into the component of replicas. When the size of block is fixed for the
limitation of memory, the total number of tensor blocks increases rapidly with the increase of the
tensor scale. The data transfer introduces a considerable time consumption. Thus in our optimization
scheme, we directly access raw data including the tensor block data from RAM to GPUs on global
memory of GPUs, and ensure that there is no intermediate data transferred back to CPUs during
the compression stage to minimize the expensive time consumption introduced by the data transfer
between CPUs and GPUs.

5 Performance Evaluation

In this section we provide a series of experimental results to evaluate the performance of the proposed
method. All experiments are on a server with two Intel(R) Xeon(R) Gold 5218 CPUs and each CPU
has 12 cores @2.30GHz supporting 24 hardware threads. There is a TITAN RTX GPU consisting
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of 24 GB device memory. There are 251 GB DDR4 memories on the server. For High-order
sketch compression method, we mainly make a research at the influence on the relative error by the
compression ratio and the number of compression replicas. For Gaussian compression, we mainly
make a research at the comparison on the relative error and time consumption between the schemes
on CPU and GPU. In each case, we generate the mode matrices A ∈ RI×R, B ∈ RJ×R, C ∈ RK×R

from an independent normal distribution to generate the tensor X I×J×K where I = J = K ranging

from 100 to 1500. The relative error is defined as
||X−X̂ ||

F

||X ||F
where X̂ is the reconstruction of X .

Figure 2: (a) shows the influence on the number of replicas P , and the compression ratio on the
relative construction error with High-order Sketch Compression. (b) and (c) respectively show the
comparison on the relative construction error and time consumption between the CPU and GPU
implementation with Gaussian Compression.

Figure 3: (a) and (b) respectively show the comparison on the relative construction error and time
consumption between the CPU and GPU implementation for large scale tensors with Gaussian
Compression.

In Figure 2 (a), we can observe that a larger P yields preciser results, but the regularity of the
compress ratio is opposite. For example, the relative error drops from 79% to 20% when we keep
the compress ratio to 10, where the compress ratio 10 indicates we compress each dimension of the
original tensor to 10% in the compressed version, and set P = 30, 000 instead of 2000. We achieve
3% relative error when the compress ratio is set as 2 after repeating 30,000 times. And the error
decays slower when P is large enough. When the compress ratio is 10, the relative error drops from
79% to 28% if we change the repeat time P from 2,000 to 16,000; on contrast, the relative error only
drops from 28% to 20% when P rises to 30,000, which also happened for other compress ratios.
It can also be implicitly seen that the relative error can be controlled under a tolerant level with a
relative small compression rate when P is fixed as a constant.

Figure 2 (b) shows the comparison of the relative error between the CPU version and the GPU version,
in which condition we set the compression ratio as a constant value of 10. Obviously the estimation
tends to reduce as the scale grows with the scope from 5% ∼ 30%. And the relative errors of the
CPU version and the CPU version are almost constant. Figure 2(c) shows the comparison of the time
consumption between the CPU version and the GPU version. It can be seen that the curves of the
time consumption on CPU and GPU both grow along with the scale grow of the tensors. And the
CPU version grows exponentially, with a maximum of 146s at the scale of 1500 × 1500 × 1500,
while the GPU version grows at a much slower speed, with a maximum of 9.4s at the scale of
1500× 1500× 1500, reducing around 138s when compared to the CPU version. The GPU version
achieves an average of 8.63× speedup with up to 16.59× speedup.

6



Figure 3 (a) and (b) show the comparison of the relative error and time consumption between the
CPU and GPU implementations when we apply our TTr1-tensor scheme to larger tensors. To trade
the computation for storage, we set the size of the replicas as constant 100× 100× 100 to reduce
the memory cost. All the relative errors increase when the matrix scale increases, but the error is
always controlled under 20%. And the GPU implementation achieves a high performance with
up to around 151.2× speedup to the CPU implementation. For the reported maximum scale of
5000× 5000× 5000, the GPU implementation only needs 58.97s while the CPU implementation
needs 8788.74s, achieving 151.2× speedup.

6 Conclusion

In this work, we propose a parallel TTr1-Tensor scheme for tensor train rank-1 decomposition that
utilizes the compression-based technique to factorize a tensor into tree-like structures. We provide
acceleration techniques for CPU as well as GPU implementations. In experiments, we test various
tensor scales and obtain a low reconstruction error. In future work, we will further explore the
potential of our scheme to achieve tensor train rank-1 decomposition on matrices in trillion or even
billion scale, and we will develop a more efficient parallelism scheme with the help of multi-GPUs.
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